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Task complexity interacts with state-space
uncertainty in the arbitration between model-based
and model-free learning
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It has previously been shown that the relative reliability of model-based and model-free
reinforcement-learning (RL) systems plays a role in the allocation of behavioral control
between them. However, the role of task complexity in the arbitration between these two
strategies remains largely unknown. Here, using a combination of novel task design, com-
putational modelling, and model-based fMRI analysis, we examined the role of task com-
plexity alongside state-space uncertainty in the arbitration process. Participants tended to
increase model-based RL control in response to increasing task complexity. However, they
resorted to model-free RL when both uncertainty and task complexity were high, suggesting
that these two variables interact during the arbitration process. Computational fMRI revealed
that task complexity interacts with neural representations of the reliability of the two systems
in the inferior prefrontal cortex.
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t has been suggested that two distinct mechanisms exist for

controlling instrumental actions: a model-free RL system that

learns values for actions based on the history of rewards
obtained on those actions!=3 and a model-based RL (MB) system
that computes action values flexibly based on its knowledge about
state-action-state transitions incorporated into an internal model
of the structure of the world*?. These two systems have different
relative advantages and disadvantages. While model-free RL can
be computationally cheap and efficient, it achieves this at the cost
of a lack of flexibility, thereby potentially exposing the agent to
inaccurate behavior following a change in either goal values and/
or environmental contingencies!»>¢. On the other hand, MB RL is
computationally expensive as it requires active computation of
expected values and planning, but retains flexibility in that it can
rapidly adjust a behavioral policy following a change in goal
values or environmental contingencies. The theoretical trade-offs
between these two systems has, alongside empirical evidence for
the parallel existence of these two modes of computation in the
behavior of animals and humans®7-28, prompted interest in
elucidating how the trade-off between these systems is actually
managed in the brain.

One influential proposal is that there exists an arbitration
process that allocates control to the two systems®162° One
specific version of this theory suggests that estimates about the
uncertainty in the predictions of the two systems mediates the
trade-off between the respective controllers, such that under
situations where the model-free system has unreliable predictions,
the model-based system is assigned greater weight over behavior,
while under situations where the model-free system has more
accurate predictions, it will be assigned greater behavioral
control®30.

A challenge in building a computationally and biologically
plausible theory of arbitration is that arbitration itself should not
be computationally expensive so as to render relative savings in
computational cost associated with being model-free vs between
model-based moot. To this end, practical computational theories
of arbitration have examined computationally cheap approx-
imations that might be utilized to mediate the arbitration process.
According to Lee et al.3%, uncertainty is approximated via a
mechanism that tracks cumulative predictions errors induced in
the two systems. Model-free uncertainty is approximated via the
average accumulation of reward-prediction errors (RPEs), while
model-based uncertainty is approximated via the accumulation of
errors in state prediction (so-called state-prediction errors
(SPEs)).

Utilizing this framework, Lee et al.3? examined the neural
correlates of arbitration. In that study, a region of bilateral ven-
trolateral prefrontal cortex was found to track the reliabilities (an
approximation of the inverse of uncertainty) in the predictions of
the two systems, consistent with a role for this brain region in the
arbitration process itself. However, the relative uncertainty or
reliability in the predictions of the two systems is only one-
component of the trade-off between the two controllers. Another
equally important element of this trade-off is the relative com-
putational cost of engaging in model-based control.

The goal of the present study is to investigate the role of
computational cost in the arbitration process, alongside relative
uncertainty. We experimentally manipulated computational cost
by means of adjusting the complexity of the planning problem
faced by the model-based controller. This was achieved by sub-
jecting participants to a multi-step Markov Decision Problem in
which the number of actions available in each state was experi-
mentally manipulated. In one condition, which we called low
complexity, two actions were available, while in another condi-
tion, which we called high complexity, four actions were available.
In addition to manipulating complexity, we also, as in our

previous study®’, manipulated the uncertainty in the state-space,
by utilizing a state-transition structure in the Markov decision
process (MDP) that invoked high levels of SPE (i.e. one where the
transitions are maximally uncertainty), and a transition structure
where the transitions are either high or low in uncertainty. Thus,
we manipulated two variables in a factorial design: state-space
complexity (low vs high), and state-space uncertainty (low
vs high).

This design allowed us to investigate the ways in which
uncertainty and complexity interact to drive the arbitration
process, thereby allowing us to assess the interaction between
(model-based) reliability and at least one simple proxy of com-
putational cost. While participants were undergoing this novel
behavioral task, we also simultaneously measured brain activity
with functional magentic resonance imaging (fMRI). This allowed
us to investigate the contribution of state-space complexity
alongside state-space uncertainty in mediating arbitration at both
behavioral and neural levels. In order to accommodate the effects
of task complexity in the arbitration process, we extended our
previous arbitration model to endow this arbitration scheme with
the capability of adjusting the arbitration process as a function of
complexity. On the neural level, we focused on the ventrolateral
prefrontal cortex as our main brain region of interest, given this
was the main region implicated in arbitration in our previous
study. We hypothesized that an arbitration model sensitive to
both the complexity of the state-space and the degree of uncer-
tainty in state-space transitions would provide a better account of
behavioral and fMRI data than an arbitration model sensitive
only to state-space uncertainty. We further hypothesized that
under high complexity, the model-based controller would be
selected against, because such complexity would overwhelm the
planning requirements of the model-based system, forcing par-
ticipants to rely instead on model-free control. Our findings
support our first hypothesis, and partially support our second
hypothesis.

Results

Markov decision task with varying degree of complexity. To
investigate the role of uncertainty and complexity in arbitration
control, we designed a novel two-stage MDP task (Fig. la), in
which we systematically manipulated two task variables across
blocks of trials, state-transition uncertainty, and state-space
complexity (Fig. 1b). The amount of state-transition uncertainty
is controlled by means of the state-action-state transition prob-
ability. The state-action-state transition probability varies
between the two conditions: high uncertainty (0.5 vs 0.5) and low
uncertainty (0.9 vs 0.1). Note that our high-uncertainty condition
is intended to maximize variability in the amount of SPE, as
opposed to making participants perfectly learn the state-
transition probabilities (0.5, 0.5). In fact, it would be more chal-
lenging to test effects on behavior of more moderate uncertainty
conditions, such as (0.7, 0.3) or (0.6, 0.4), within a relatively short
blocks of trials.

Switching between the two uncertainty conditions is designed
to induce change in the average amount of SPEs, thereby
influencing the reliability of the MB system. For instance, the high
uncertainty condition will elicit a large amount of SPEs,
essentially resulting in a decrement in MB prediction perfor-
mance. In the low uncertainty condition, the SPE will decrease or
stay low on average as the MB refines an estimate of the state-
action-state transition probabilities. On the other hand, the
performance of MF is less affected by the amount of state-
transition uncertainty®. The second variable, the number of
available choices, is intended to manipulate task complexity. The
total number of available choices is two and four in the low and
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Fig. 1 Task design. a Two-stage Markov decision task. Participants choose between two to four options, followed by a transition according to a certain
state-transition probability p, resulting in participants moving from one state to the other. The probability of successful transitions to a desired state is
proportional to the estimation accuracy of the state-transition probability, and it is constrained by the entropy of the true probability distribution of the
state-transition. For example, the probability of a successful transition to a desired state cannot exceed 0.5 if p=(0.5, 0.5) (the highest entropy case).
b lllustration of experimental conditions. (Left box) A low and high state-transition uncertainty condition corresponds to the state-transition probability
p=1(0.9, 0.1) and (0.5, 0.5), respectively. (Right box) The low and high state-space complexity condition corresponds to the case where two and four
choices are available, respectively. In the first state, only two choices are always available, in the following state, two or four options are available
depending on the complexity condition. ¢ Participants make two sequential choices in order to obtain different colored tokens (silver, blue, and red) whose
values change over trials. On each trial, participants are informed of the “currency”, i.e. the current values of each token. In each of the subsequent two
states (represented by fractal images), they make a choice by pressing one of available buttons (L1, L2, R1, R2). Choice availability information is shown at
the bottom of the screen; bold and light gray circles indicate available and unavailable choices, respectively. d lllustration of the task. Each gray circle
indicates a state. Bold arrows and lines indicate participants’ choices and subsequent state-transition according to the state-transition probability,
respectively. Each outcome state (state 4-11) is associated with a reward (colored tokens or no token represented by a gray mosaic image). The reward

probability is 0.8.

high complexity condition, respectively. To prevent state-space
representations from being too complex, we limit the number of
available choices to two in the first stage of each trial, while the
choice availability in the second stages are either set to two or
four (Fig. 1b, c). The manipulation of choice availability creates
wide variability in the number of ways to achieve each goal,
causing the difficulty level on each trial to range from easy to
arduous. This design therefore provides four different types of
conditions. Each condition is associated with a different level of
computational cost (low/high x uncertainty/complexity; see
Supplementary Fig. 1). Participants then make sequential choices
in order to obtain different colored tokens (Fig. 1d).

Another feature of the MDP is that participants could take
actions in order to obtain one of three different tokens, a silver,
red, or blue token (Fig. 1c). On each trial, the relative value of the
tokens, in terms of the rate of exchange of each token for real-
world money (US cents), is flexibly assigned, as revealed at the
beginning of each trial. For example, on a given trial, the silver
token if won on that trial might yield 6 US cents, the red token, 1
US cents, and the blue token 9 cents, while the allocations could
be different on the next trial. This design feature is intended to

induce trial-by-trial changes in goal values, thereby also inducing
variance in RPEs and hence the reliability of MF across trials.

Behavioral results. Twenty-four adult participants (12 females,
age between 19 and 55) performed the task, and among them 22
participants were scanned with fMRI. The task performance of
participants in terms of both the total amount of earned reward
and the proportion of optimal choices is significantly greater than
chance level in all conditions (paired ¢-test; p < le-5).

Our task design incorporates a specific behavioral marker, a
choice bias, which could indicate goal-specific planning of the
model-based controller (for full details, see Supplementary
Methods—choice bias and Fig. 2a). We found evidence in
subjects’ data to fully dismiss the possibility that subjects use a
pure model-free control strategy (Fig. 2b).

To provide a direct test of the extent to which participants’
behavior is under MB control, we defined an independent
behavioral measure called choice optimality which quantifies the
extent to which participants took the objectively best choice had
they complete access to the task state-space, and a perfect ability
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Fig. 2 Behavioral results—choice bias and choice consistency. a Predicted choice bias patterns of model-free (MF) and model-based (MB) control,

calculated for the three goal conditions defined as the trials according to which coin has the maximum monetary outcome value (low, medium, and high
token value for the L choice). Owing to the asymmetric association between outcome states and coin types (For full details, see Supplementary Methods—
Choice bias), participants would exhibit distinct choice bias patterns for each goal condition that distinguishes model-based from model-free control; the
MF control agent would exhibit a balanced choice bias pattern, whereas the MB control agent would show a slight left bias pattern. For full details of this
measure, refer to Supplementary Methods—Behavioral measure. b Participants’ choice bias and choice consistency, conventional behavioral markers

indicating reward-based learning. Error bars are SEM across subjects. The prediction about the choice bias matches subjects’ actual choice bias (the left of
the below figure). In particular, the data show a clear left bias pattern, rejecting the null hypothesis that subjects used a pure model-free control strategy.
This bias is also reflected in choice consistency (the right plot). These results also indicate that participants’ choice behavior is guided by reward-based

learning more generally.

to plan actions in that state-space. It is defined as the ratio of
trials on which the subject’s choice matches with the choice of an
ideal agent assumed to have full access to the true state-space
model (for more details, see Methods and Supplementary
Methods). Choice optimality is a proxy of the extent to which
participants engage in model-based control, because assuming
complete knowledge of the state-space and no cognitive
constraints, the MB agent will always choose more optimally
than an MF agent. This prediction is confirmed by an
independent computer simulation with pure MB and MF learning
agents (Fig. 3a). The simulation also provides a more specific
prediction that choice optimality would be greater for MB than
MF strategies across all levels of uncertainty and complexity in
this task (Fig. 3b).

We found a strong effect of uncertainty and complexity on
choice optimality in participant’s actual behavior (Fig. 3c; two-
way repeated measures ANOVA; p < le-4 for both the main effect
of uncertainty and the interaction effect; see Supplementary
Table 3). We also found that uncertainty and complexity explain
the highest variance in choice optimality when contrasting the
effects of those variables against other plausible variables
(Fig. 3d).

Although choice optimality provides a model independent
profile of MB control, an open question is what specific patterns
of choice behavior lead to high choice optimality. To address this,
we focused on choice behavior after a change in token values has
occurred that necessitates a change in the goal compared to the
previous trial. The degree to which people switch strategy in
response to a changing goal should relate to the extent to which

they are engaging MB control. Accordingly, choice switching
associated with goal change (in combination with also choosing a
better alternative on the next trial) provides a good account of
choice optimality (Supplementary Fig. 2).

In summary, we formally established a link between the
experimental manipulations (goal changes, uncertainty, and
complexity) and the participants’ choice behavior (choice
switching), choice optimality, and learning strategies.

Computational model incorporating uncertainty and com-
plexity. To test our computational hypotheses regarding the effect
of uncertainty and complexity on choice behavior, we built a
normative model of arbitration control®! (see Fig. 4). A simpler
version of this model was previously found to account well for
arbitration between MB and MF RL in both behavioral®%32 and
fMRI data30. In the new version of this model, preference for MB
and MF RL—Pyg is a function of both prediction uncertainty and
task complexity. Prediction uncertainty refers to estimation
uncertainty about state-action-state transitions and rewards.
These signals are estimated using SPE and RPE signals that
underpin MB and MF learning respectively. We specifically
hypothesized that task complexity also influences the transition
between MB and MF RL.

Our new model becomes equivalent to our previous arbitration
model®0 if task complexity is set to a low constant level as in a
two-stage Markov decision task without a complexity perturba-
tion. Further, when the environment is perfectly stable (ie., a
fixed amount of state-transition uncertainty and a fixed level of
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Fig. 3 Behavioral results— choice optimality. a Choice optimality (a proxy for assessing the degree of agents’ engagement in model-based control) of a
model-based and model-free RL agent. Each MB and MF model simulation (that generates each one of the data points) was produced using free
parameters derived from separate fits of each of these models to each individual participant’'s behavioral data in the study. Choice optimality depicts the
degree of match between agents’ actual choices and an ideal agent's choice corrected for the number of available options. For full details of this measure,
refer to Methods. b Difference in choice optimality between an MB and MF agent for the four experimental conditions (low/high state-transition
uncertainty x low/high-task complexity). Shown in red boxes are the effect of the two experimental variables on each measure (two-way repeated
measures ANOVA). ¢ Participants' choice optimality for the four experimental conditions. Shown in red boxes are the effect of the two experimental
variables on each measure (two-way repeated measures ANOVA,; also see Supplementary Table 3 for full details). d Results of a general linear model
analysis (dependent variable: choice optimality, independent variables: uncertainty, complexity, reward values, choices in the previous trial, and goal
values). Uncertainty and complexity, the two key experimental variables in our task, significantly influence choice optimality (paired t-test; p < 0.007). Error

bars are SEM across subjects.

task complexity), the particulars of this model converge to a stable
mixture of MB and MF RL’.

The process of our computational model is described as
follows: first, in response to the agent’s action on each trial, the
environment provides the model with the state-action-state
transition, token values, and task complexity. These observations
are then used to compute the transition rates (MB—MF and
MF—MB), which subsequently determines the model choice
probability Pyjp. Second, the model integrates MB and MF value
estimations to compute an overall integrated action value (Q(s,a)
of Fig. 4), which is subsequently translated into an action (P(als)
of Fig. 4). It is noted that we use this framework to formally
implement various hypotheses about the effect of uncertainty and
complexity on RL. For instance, the configuration of the model
that best accounts for subjects’ choice behavior would specify the
way people combine MB and MF RL to tailor their behavior to
account for the degree of uncertainty and complexity of the
environment.

Effects of uncertainty and complexity on learning. To deter-
mine how task complexity is embedded into the arbitration
control process, we formulated a variety of possible model
implementations, which we could then fully permute and test in a
large-scale model comparison, described briefly as follows (see
Fig. 5a and Methods section for more details of model
specification):

The first factor in the hypothesis set is the effect of complexity
on arbitration control. We considered different ways in which
complexity could impact on the allocation of MB vs MF control,
including whether the modulation was excitatory or inhibitory, i.e.
whether complexity influence on the arbitration process positively
or negatively. Also considered was the direction of modulation:
does complexity effect the transition of behavioral control from
model-free to model-based, from model-based to model-free, or
does the transition operate in both directions (see Methods). We
also considered several ways in which the effects of uncertainty
might interact with the effects of complexity (see Methods).
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Fig. 4 Computational model of arbitration control incorporating
uncertainty and complexity. The circle-and-arrow illustration depicts a
two-state dynamic transition model, in which the current state depends on
the previous state (an endogenous variable) and input from the
environment (exogenous variables). The environmental input includes the
state-transition which elicits state-prediction errors (SPEs), rewards that
elicit reward-prediction error (RPEs), and the task complexity. The arrow
refers to the transition rate from MB to MF RL or vice versa, which is a
function of SPE, RPE, and task complexity. The circle refers to the state,
defined as the probability of choosing MB RL (Pug). Q(s,a) refers to the
values of the currently available actions (a) in the current state (s). The
value is then translated into action, indicated by the action choice
probability P(als).

The second factor is the effect of complexity on the choice
itself. We tested whether task complexity impacted on the soft-
max choice temperature that sets the stochasticity of the choices
of the integrated model, by comparing the case in which there is
no effect of complexity on the choice temperature parameter
(Null), a case in which increasing complexity increases the degree
of explorative choices, and the case where increasing complexity
decreases the degree of choice exploration.

Thirdly, we considered the implementation of the model-free
algorithm. Recall that at the beginning of each trial, the
participant is presented with the current value of each of the
three tokens. The most naive implementation of model-free RL
would ignore those token values and treat each trial the same
irrespective of what values are assigned to particular tokens.
Alternatively and more plausibly, token values could be
embedded into the state space itself, on which the model-free
agent learns. For this possibility, we built a modified model-free
algorithm that divided up the task into three unique state-space
representations depending on which token was the dominant goal
(which depends on which token was the most valuable on a given
trial), a model variant we call the 3Q model. Another, perhaps
less plausible possibility is that three completely separate model-
free strategies exist to learn about the separate values of each
possible goal, which we call the 3MF model. Thus, we tested three
classes of model-free agent, ranging from a simple model-free
agent that does not differentiate between token states, a model
that treats the most valuable token as identifying one of three
relevant subsets of the state-space (red token goal, blue token
goal, and silver token goal) and a model that assumes three
independent model-free agents for each selected goal.

The effect of uncertainty on the transition rate was imple-
mented as in our previous model3?. Each of these factors (and
sub-factors) was fully tested in each possible combination with
each other factor, rendering a total of 117 model variants, that
also included as a baseline model, the original arbitration scheme
from our 2014 paper that only incorporated uncertainty as a

variable and not complexity (see Fig. 4). We then compared the
extent to which each of those models could explain the behavioral
data using across all of these models. For this, we fit each version
of the model to each individual subject’s data, and then ran a
Bayesian model selection33, with exceedance probability p > 0.99
(Fig. 5; see Model comparison in Supplementary Methods).

We found that one specific model variant provided a dominant
account of the behavioral data, with an exceedance probability of
0.99 (Information about model parameter values are provided in
Supplementary Table 1 and Supplementary Fig. 3, respectively).
The exceedance probability for the best-fitting model was still
0.97 when restricting our model comparison process to only the
best-fitting 5 models from the original large-scale BMS analysis,
suggesting that these findings are not an artifact of running a
large-scale model comparison (Supplementary Fig. 4). In the best-
fitting model, an increase in task complexity exerted a positive
modulatory effect on the transition between MF and MB control.
That is, the best-fitting model supported an effect of complexity
on arbitration such that an increase in complexity produced an
increased tendency to transition from MF to MB control. Recall,
that this is not compatible with our initial hypothesis that
increased complexity would generally tax the accuracy of the MB
controller, thereby resulting in an increase in MF control.
However, the best-fitting model also prescribed that uncertainty
and complexity interact, such that under conditions of both high
uncertainty AND high complexity, MF control would become
favored. We will describe in more detail the nature of this
interaction in the section below. Secondly, the best-fitting model
had the feature that increasing complexity increases the degree of
exploration, suggesting that subjects tend to explore more under
conditions of high-task complexity. Finally, the best-fitting model
variant also had the feature that the state-space for the MF agent
was sub-divided according to which goal was currently selected
(assuming that the goal selected corresponded to the maximum
token value), i.e. the 3Q model, as opposed to a single MF agent
that ignores token values, or separate MF agents. In summary, we
found evidence for a model incorporating the effects of both
uncertainty and complexity in arbitration between MB and MF
RL, and that these two variables interact to drive arbitration as
detailed in the following section.

Effect of uncertainty and complexity on arbitration control.
Choice behavior generated by the best-fitting model also describes
the extent to which participants’ actual choice behavior can be
shown to be guided by reward-based learning more generally
(Fig. 6a). In addition, we ran a parameter recovery analysis to
further establish a link between choice behavior and the com-
putations underlying arbitration control, and found that the
model’s key parameters were successfully recovered from the
behavior of the best-fitting model (Parameter recovery analysis;
Supplementary Fig. 5).

We also attempted to get a direct behavioral readout of model-
based control for the four blocked experimental conditions: low/
high uncertainty x low/high complexity. Specifically, we checked
whether the effect of uncertainty and complexity on choice
optimality also exists in the model’s predicted behavior. Notably,
when the best-fitting model performed the task, we found that
human participants’ actual choice optimality patterns (Fig. 3c) are
predicted well by our computational model (Fig. 6b).

To gain more insight into the role of uncertainty and
complexity on choice of the MB vs MF RL strategy, we assessed
the degree of engagement of the model-based control of our
computational model. For this we examined the model weight
Pyip. The Pyp weight was binned and averaged within each
subject according to whether or not the trial was high or low in
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Fig. 5 Model comparison analysis on behavioral data. a We ran a large-scale Bayesian model selection analysis to compare different versions of arbitration
control. These model variants were broadly classified as reflecting the effect of complexity on the transition between MB and MF RL (13=1+42x2x3
types), the effect of complexity on exploration (3 variants), and the form of the MF controller (3 variants) each of which is classified by a type of goal-
driven MF (3 types), an effect of complexity on transition between MB and MF RL, and an effect of complexity on exploration (3 types). Lee2014 refers to
the original arbitration model39. b Results of the Bayesian model selection analysis. Among a total of 117 versions, we show only 41 major cases for
simplicity, including the original arbitration model and 40 other different versions that show non-trivial performance (but the same result holds if running
the full model comparison across the 117 versions). The model that best accounts for behavior is the version {3Q model, interaction type2, excitatory
modulation on MF—MB, explorative} (exceedance probability >0.99; model parameter values and distributions are shown in Supplementary Table 1 and

Supplementary Fig. 3, respectively).

complexity and high or low in state-space uncertainty, and the
fitted model-weights were then averaged across participants. Note
these are model fits, illustrative of model performance as fit to the
behavioral data, rather than being directly informative about
participants’ actual behavior. In essence, this is a way to
understand the behavioral predictions of the model itself. When
interrogating the fitted model, we found an effect of uncertainty
and complexity on the weighting between MB and MF control
(Fig. 6¢; two-way repeated measures ANOVA; p < le-4 for the
main effect of both state-transition uncertainty and task
complexity; p = 0.039 for the interaction effect; full statistics are
shown in Supplementary Table 4). Specifically, according to the
model, MB control is preferred when the degree of task
complexity increases, whereas MF is favored when the amount
of state-space uncertainty increases. A more intriguing finding is
that the increase in state-transition uncertainty tends to nullify
the effect of task complexity or vice versa.

To further compare the degree of influence of uncertainty and
complexity on choice optimality within the model, we ran a
general linear model (GLM) analysis on the model’s behavioral
data, in which uncertainty and complexity were regressed against
choice optimality, and we ran another GLM analysis on the actual
participants’ behavioral data. The model’s behavioral data
were generated by running simulations with our model on the

behavioral task. We found a significant correlation between the
effect sizes of these two cases (Fig. 6d, e), suggesting that our
model encapsulates the essence of participants’ behavior as
guided by an arbitration determined mix of MB and MF RL. It is
noted that, our model, which incorporates both uncertainty and
complexity, accounts for behavior significantly better than the
original Lee2014 model that incorporates only uncertainty (refer
to Supplementary Fig. 6).

In summary, these results provide both a computational and
behavioral account of how participants regulate the tradeoff
between MB and MF RL in the presence of uncertainty and task
complexity: they tend to favor use of a MB RL strategy under
conditions of high compared to low task complexity, while at the
same time they tend to resort to MF RL when the amount of
state-space uncertainty increases to the level at which the MB RL
strategy can no longer provide reliable predictions. However,
these variables interact such that under conditions of both high
complexity and high uncertainty, model-free control is favored
over and above the effects of each of these two variables alone.

Neural representations of model-based and model-free RL. To
provide a neural account of MB and MF RL, we ran a GLM
analysis on the fMRI data in which each variable of the
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Fig. 6 Computational model fitting results. a Choice bias (left), choice consistency (middle), and the average value difference (right) of our computational
model of arbitration control (Fig. 5b). For this, we ran a deterministic simulation in which the best-fitting version of the arbitration model, using parameters
obtained from fitting to participants behavior, experiences exactly the same episode of events as each individual subject, and we generated the trial-by-trial
outputs. The max goal conditions are defined in the same way as in the Fig. 2a. Error bars are SEM across subjects. Note that both the choice bias and
choice consistency patterns of the model (the left and the middle plot) are fully consistent with the behavioral results (Fig. 2b). Second, the values
difference (left-right choice) of the model is also consistent with this finding (the right plot), suggesting that these behavioral patterns are originated from
value learning. In summary, our computational model encapsulates the essence of subjects’ choice behavior guided by reward-based learning. b Patterns of
choice optimality generated by the best-fitting model, using parameters obtained from fitting to participants behavior. For this, the model was run on the
task (1000 times), and we computed choice optimality measures in the same way as in Fig. 3. ¢ Degree of engagement of model-based control predicted
by the computational model, based on the model fits to individual participants. Pyg corresponds to the weights allocated to the MB strategy. Shown in the
red box are the effect of the two experimental variables on each measure (two-way repeated measures ANOVA,; also see Supplementary Table 4 for full
details). Error bars are SEM across subjects. d, e Behavioral effect recovery analysis. The individual effect sizes of uncertainty (d) and complexity (e) on
choice optimality of subjects (true data) were compared with those of our computational model (simulated data).

computational model that best-fit behavior is regressed against findings, we found SPE signals in dorsolateral prefrontal cortex
the fMRI data (see Methods). First, we replicated previous find-  (dIPFC) (p <0.05 family-wise error (FWE) corrected)?430 and
ings indicating neural encoding of prediction error signals, SPE  RPE signals in the ventral striatum (p <0.05 small volume cor-
and RPE, two key variables necessary for updating MB and MF  rected)3%343> Second, we replicated chosen value signal corre-
RL values (see Supplementary Table 2). Consistent with previous lates for the MB and MF controllers. The MB value signal was
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Fig. 7 Neural signatures of model-free and model-based RL and arbitration control. a Bilateral ilPFC encodes reliability signals for both the MB and the
MF systems. Note that the two signals are not highly correlated (absolute mean correlation <0.3); this task design was previously shown to successfully
dissociate the two types of RL3C. Threshold is set at p < 0.005. b (Left) Inferior lateral prefrontal cortex bilaterally encodes reliability information on each
trial of both MB and MF RL, as well as whichever strategy that provides more accurate predictions (“max reliability”30). (Right) The mean percent signal
change for a parametric modulator encoding a max reliability signal in the inferior lateral prefrontal cortex (IPFC). The signal has been split into two equal-
sized bins according to the 50th and 100th percentile. The error bars are SEM across subjects.

associated with BOLD activity in multiple areas within the PFC
(p <0.05 cluster-level corrected), whereas the MF value signal was
found in supplementary motor area (SMA) (p <0.05 FWE cor-
rected) and notably posterior putamen (significantly at p<
0.05 small volume corrected), which has previously been impli-
cated in MF valuation!%36. Third, we found evidence in the
ventromedial prefrontal cortex (vmPFC) for an integrated value
signal that combines model-based and model-free value predic-
tions according to their weighted combination as determined by
the arbitration process (Q(s,a) shown in Supplementary Table 2;
significantly at p < 0.05 small volume corrected). In summary, we
replicated existing findings about fMRI correlates of variables
necessary to implement MB and MR RL.

In addition, we found additional evidence for the implementa-
tion of the goal-driven MF model (Supplementary Table 2; the
definition of the regressor is provided in Supplementary Meth-
ods), which is that the activity of medial frontal gyrus was found
to be bilaterally correlated with the goal change signals (p < 0.05
FWE corrected; Supplementary Fig. 7), information necessary for
the agent to cache out an MF value signal in order to achieve a
new goal.

Arbitration signals in prefrontal cortex. We next examined the
fMRI data for arbitration signals. Replicating our previous
results®®, we found correlates of reliability signals for both MB
and MF controllers in the inferior lateral prefrontal cortex (ilPFC)
bilaterally (Fig. 7a). But the activity of ilPFC was most strongly
associated with the maximum of the reliability of the MB and MF
systems, that is, when using a regressor in which the reliability
value of whichever system was most reliable on a given trial is
input as the value for that trial (Fig. 7b; p <0.05 cluster-level
corrected). These findings are again successful replications of
findings from our previous study3(. Note that the activity of ilPFC
also reflects an alternative (not based on our computational fMRI
analysis) measure of model-based control, choice optimality
(Supplementary Fig. 8).

Model comparison against fMRI data. Next to formally test our
main hypothesis of uncertainty and complexity-sensitive arbi-
tration control, we compared two separate arbitration models
against the fMRI data. One was the best-fitting model described
above in which both task complexity and reliability are taken into
account as playing a role in driving the arbitration process. The
second, was a model in which only reliability was involved in the
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model-based and model-free RL (Bayesian model selection)
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Fig. 8 Results of a Bayesian model selection analysis. The red blobs and
table show the voxels and the number of voxels, respectively, that favor
each model with an exceedance probability >0.95, indicating that the
corresponding model provides a significantly better account for the BOLD
activity in that region. Lee2014 refers to an arbitration control that takes
into account only uncertainty as used by Lee et al.30. Current model refers
to the arbitration control model that was selected in the model comparison
based on the behavioral data which incorporates both prediction
uncertainty and task complexity. For an unbiased test, the coordinates of
the iIPFC and the vmPFC ROIls were taken from ref. 30,

arbitration process®). We then compared the fit of these two
models to the fMRI data in two brain regions, ilPFC for reliability
signals and vmPFC for valuation signals. For this we ran a
Bayesian model selection analysis®3, using spherical ROIs cen-
tered on the coordinates from our 2014 study, thereby ensuring
independence of the ROI selection from the current dataset. In a
majority of voxels in both regions, reliability signals from the
model incorporating both reliability and task complexity were
preferred over the previous model incorporating reliability only
(Fig. 8). These findings go beyond our original 2014 findings by
providing evidence that the model in which complexity is taken
into account provides a better account of prefrontal-mediated
arbitration control.
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Fig. 9 Modulation of inferior prefrontal reliability by complexity. a (Left)
Bilateral iIPFC was found to exhibit a significant interaction between
complexity and reliability (Max reliability x complexity). Statistical
significance of the negative effects is illustrated by the cyan colormap. The
threshold is set at p <0.005. (Right) The brain region reflecting the
interaction effect largely overlaps with the brain area implicated in
arbitration control. The red and blue regions refers to the main effect of
max reliability and the interaction between reliability and task complexity,
respectively, thresholded at p <0.001. b Plot of average signal change
extracted from left and right iIPFC clusters showing the interaction, shown
separately for reliability signals derived from the MF and MB controllers.
Data are split into two equal-sized bins according to the 50th and 100th
percentile of the reliability signal, and shown for the trials in the low and
high complexity condition separately. The error bars are SEM across
subjects.

Modulation of inferior prefrontal reliability by complexity. We
have thus far demonstrated that reliability signals from an arbi-
tration model incorporating task complexity provides a better
account of fMRI activity than reliability signals derived from a
model that does not incorporate complexity. To test for an
explicit contribution of task complexity to the neural arbitration
signal, we next ran an additional fMRI analysis in which we
included a parametric regressor denoting the onset of trials of
high vs low task complexity as a separate regressor of interest. We
then entered another additional regressor, corresponding to the
formal interaction of Max reliability with task complexity to
reveal areas in which the reliability signal is modulated differently
depending on whether a specific trial is high or low in complexity.
While we found no significant effect of the main effect of task
complexity in our main regions of interest (Supplementary
Table 2), we found evidence for a significant interaction effect
of complexity and reliability. A region of ilPFC bilaterally was
found to show a significant negative interaction between com-
plexity and reliability (Fig. 9a). This region was found to overlap

substantively with the regions of ilPFC found to exhibit a main
effect of reliability (Fig. 9b). To visualize the interaction effect, in
a post-hoc analysis we extracted the average % signal change from
clusters exhibiting the interaction in left and right ilPFC respec-
tively. We binned the signal according to whether reliability was
high or low, and whether complexity was high or low, shown in
Fig. 9b. Reliability signals are plotted separately for MF and MB
reliability, although the results are similar for max reliability. As
can be seen, the reliability signals show evidence of being atte-
nuated particularly when complexity is high relative to when
complexity is low. This shows how these two arbitration signals
interact in ilPFC.

Discussion

We provide evidence supporting the interaction of two key
variables in arbitration control between MB and MF RL. In
addition to replicating our previous finding implicating the
uncertainty (or reliability) of the predictions made by the model-
based and model-free controllers in moderating the influence of
these two systems over behavior, we found evidence that state-
space complexity also contributes to setting the balance between
these two systems. These behavioral results were supported by
evidence that a region of the brain previously implicated in the
arbitration process, the ilPFC not only encodes signals related to
the reliability of the predictions of the two systems that would
support an uncertainty-based arbitration mechanism, but fur-
thermore that activity in this region is better accounted for by an
arbitration model that also incorporates the effects of task com-
plexity into the arbitration process. Moreover, we found evidence
that task complexity and reliability appear to directly interact in
this region. Taken together, these findings help advance our
understanding of the contribution of two key variables to the
arbitration process at behavioral and neural levels.

We found direct evidence for a contribution of task complexity
to arbitration. In our large-scale model comparison we found
empirical support for a version of the arbitration process in which
the complexity variable has a positive modulation effect on the
transitions from MF to MB. Second, this is corroborated by the
fact that the best-fitting model exhibited an increased preference
for MB over MF in the high complexity condition on average.
Third, in an independent behavioral analysis which uses choice
optimality to quantify the extent to which choice behavior is
guided by MB RL, we found that subjects’ choice optimality
increases with the degree of task complexity. These results toge-
ther suggest that an increase in task complexity creates an overall
bias towards MB RL, contrary to our initial hypothesis in which
we considered that increased complexity would tax the model-
based system resulting in increased model-free control. Another
interesting finding supporting this idea is that an increase in task
complexity makes choices more flexible and explorative. In
summary, these findings suggest that humans attempt to resolve
task complexity by engaging a more explorative MB RL strategy.

We also found an effect of state-space uncertainty on the
arbitration process. Specifically, very high state-space uncertainty
makes participants resort more to an MF RL strategy. This effect
arises because high state-space uncertainty results in a lowered
reliability of the predictions of the model-based controller,
thereby resulting in a reduced contribution of behavior of the
model-based controller. It should be noted that, the model-based
controller should generally compute a more accurate prediction
than its model-free counterpart, which by contrast necessarily
generates approximate value predictions. However, this holds
only under the situation where the model-based controller has
access to a reliable model of the state-space. If its state-space
model is not reliable or accurate, then the model-based controller
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cannot generate accurate predictions about the value of different
actions. In this task, we influence the extent to which the model-
based controller has access to reliable predictions about the state-
space by directly modulating the state-space uncertainty. Thus,
under conditions in which the state-space model is highly unre-
liable, humans appear to rely more on model-free control. Con-
versely, as we have shown previously’?, if the reliability of the
model-free controller is decreased, participants will all else being
equal rely more on model-based control. Thus, uncertainty in the
predictions of these controllers appears to play a key role in
underpinning the arbitration process between them.

In addition to the main effects of complexity and state-space
uncertainty, we have shown that these two variables interact.
Under conditions where both state-space uncertainty is high and
complexity is high, the MB system appears to be dis-
proportionately affected, in that participants abandon MB-based
control in favor of MF control. Thus, our hypothesis about an
effect of complexity resulting in decreased MB control was borne
out in a qualified manner, in that this effect only happens when
state-space uncertainty is high. This finding suggests that the
arbitration process takes into account the effects of both of these
variables at the same time, and dynamically finds a tradeoff
between them. Participants appear to use MB RL to resolve
uncertainty and complexity, but owing to the fact that MB RL is
more cognitively demanding than MF RL, they resort to the
default strategy, MF RL, when the performance gain of MB RL
does not outweigh the level of cognitive load required for MB RL.
Another way of interpreting these findings is that when task
demands increase but the MB system is capable of meeting those
challenges, then MB control can and does step up to meet the
challenge, but if task demands get beyond the capacity of the MB
system, then MF control takes over by default. It is likely that
individual differences in executive function such as working
memory capacity will moderate this effect across participants, as
has been shown in the case of other challenges to MB control
such as stress induction3”-38,

The present findings are also relevant to the predictions of
expected value of control (EVC) theory3*40. While the theory
predicts that increasing task difficulty brings about an increase in
the intensity of cognitive control signals, the theory itself does not
offer a direct prediction about how control signal intensity
influences RL. Our computational model explains how the brain
chooses between MB and MF RL with varying degrees of cog-
nitive control intensity, and furthermore, why this choice is made.

The model comparison analysis of the present study also
revealed that task complexity affects transitions from MF to MB
RL, but not transitions in the other direction. This finding pro-
vides further evidence to support the existence of an asymmetry
in arbitration control such that arbitration is performed in a way
that selectively gates the MF system!®30. These results may be
reasonable from an evolutionary perspective in that the imple-
mentation of MF learning in parts of the basal ganglia may have
arisen earlier on in the evolutionary history of adaptive intelli-
gence, while later on, cortically mediated MB control may have
emerged so as to deal with more complex situations.

Our study also advances understanding of inferior prefrontal
cortex computations during arbitration. This region was found to
encode not only the reliability of the two systems3? but also task
complexity. The reliability signal itself was found to reflect the
effects of task complexity, as shown by the formal model com-
parison in which activity in this region was better accounted for
by an arbitration model that incorporated task complexity com-
pared one ignoring task complexity. Moreover, we found that
when testing directly for an interaction between the reliability
signals and complexity, an overlapping region of inferior pre-
frontal cortex showed evidence for a significant interaction

between these signals. These findings demonstrate that task
complexity directly modulates the putative neural correlates of
the arbitration process.

It is also important to acknowledge that a number of open
questions remain. A fundamental question concerns how arbi-
tration computations within inferior prefrontal cortex are actually
implemented at the neuronal level. While our findings show
BOLD responses related to various arbitration related-signals in
this region, how these signals are utilized at the neural level to
implement the arbitration process is not known. Building on the
present study and earlier studies investigating executive control
mechanisms in prefrontal-striatal circuitry”-®?341->1 more bio-
logically plausible models of the arbitration process could be
developed to go beyond the algorithmic level used in the present
study. Furthermore, to guide the development of such models, a
better understanding of the underlying neuronal dynamics in
these prefrontal regions during the arbitration process is neces-
sary, suggesting the utility of techniques with better spatial and
temporal resolution than fMRIL

An important limitation of the task used here is that behavior is
studied under conditions of high instability and/or variability in
transitions between MB and MF control. This is done by design,
because to maximize signal detectability within the framework of an
fMRI study, we needed to maximize the variance in the transition
between these two different forms of control. However, in real-
world behavior, it could be expected that transitions between MB
and MF control would typically evolve at a slower pace. One of the
main advantages of MF control is the lower computational cost
entailed by engaging cached values learned via model-free RL
compared to model-based RL. However, in the long run the MB
system should cease computing action-values when the MF system
is in control, as otherwise the cost advantage gained by increasing
MF control would be moot. A limitation of the present model is
that it assumes that MB values continue to be computed throughout
the task. This is so because we did not find behavioral evidence that
such signals ceased to be estimated during the task, which would be
manifested at the behavioral level by complete dominance of MF
control over behavior. However, we suspect that in real-world
behavior, the MB system would eventually go offline, and this
should be reflected in behavioral dominance of MF control. More
generally, it will be important to study the behavior of MB and MF
controllers across a wide range of tasks and experimental conditions
to gain a more complete understanding of the arbitration process.

Finally, the task complexity manipulation used here by which
we increased the number of available state-spaces available in the
decision problem can also impact on the MF system, because the
increase in the number of actions to be learned means that the
MF system has less opportunity to sample those state-action
pairs, thereby having less opportunity to acquire accurate value
representations. Thus, the trade-off under these conditions is
more complicated than the effects of computational cost on MB
control. Further, though we focused on complexity and uncer-
tainty as one potential way to manipulate computational cost, it is
possible our findings will not generalize to other forms of com-
putational cost. Future studies could therefore focus on further
delineating the effects of state-space complexity from other fac-
tors related to computational cost.

In conclusion, our findings provide insight into how the brain
dynamically combines different RL strategies to deal with
uncertainty and complexity. Our findings suggest that both of
these variables are taken into account in the arbitration between
MB and MF RL. Moreover, we found that such an arbitration
control principle is best reflected in neural activity patterns in the
ilPFC, the same area we previously found to play a pivotal role in
arbitration control, thereby fostering a deeper appreciation of the
role of ilPFC in arbitration control.
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Methods

Participants. Twenty-four right-handed volunteers (ten females, with an age range
between 19 and 55) participated in the study, 22 of whom were scanned with fMRI.
They were screened prior to the experiment to exclude those with a history of
neurological or psychiatric illness. All participants gave informed consent, and the
study was approved by the Institutional Review Board of the California Institute of
Technology.

Stimuli. The image set for the experiment consisted of 126 fractal images to
represent states, three kinds of color coins (red, blue, and silver), and four kinds of
fractal images to represent outcome states associated with each color coin (red,
blue, silver, and none). The colors of the outcome state image were accompanied by
numerical amounts which indicate the amount of money that subjects could
receive in that state. Before the experiment began, the stimulus computer randomly
chose a subset of 11 fractal images to be subsequently used to represent each state
in that specific participant.

Task. Participants performed a sequential two-choice Markov decision task, in
which they need to make two sequential choices (by pressing one of four buttons:
L1, L2, R1, R2) to obtain a monetary outcome (token) at the end stage. Making no
choice in 4 s had a computer make a random choice to proceed and that trial was
marked as a penalizing trial. Each trial begins with a presentation of values of each
token in that trial, followed by a presentation a fractal image representing a starting
state. The presentation of each state is accompanied by choice availability infor-
mation shown at the bottom of the screen. Only two choices (L1 and R1) are
available in the starting state (S1). The starting state is the same across all trials.
Making a choice in the starting state is followed by a presentation of another fractal
image representing one of ten states (S2-S11). The states were intersected by a
variable temporal interval drawn from a uniform distribution between 1 and 4s.
The inter-trial interval was also sampled from a uniform distribution between 1
and 4. The reward was displayed for 2s. At the beginning of the experiment,
subjects were informed that they need to learn about the states and corresponding
outcomes to collect as many coins as possible and that they will get to keep the
money they cumulatively earned at the end of the experiment. Participants were
not informed about the specific state-transition probabilities used in the task except
they were told that the contingencies might change during the course of the
experiment. In the pre-training session, to give participants an opportunity to learn
about the task structure, they were given 100 trials in which they can freely navigate
the state space by making any choices. During this session, the state-transition
probability was fixed at (0.5, 0.5) and the values of all color tokens are fixed at 5,
indicating that any token color would yield the same amount of monetary reward.
The experiment proceeded in five separate scanning sessions of 80 trials each on
average.

In order to effectively dissociate the model-free strategy from the model-based,
the experimental design of the present study introduces two task parameters:
specific goal-condition and state transition probabilities. First, to create a situation
in which the model-based control is preferred over the model-free control, the
present experimental design introduced a generalized version of the specific goal
condition3?, in which all token values are randomly drawn from a uniform
probability distribution U(1,10) from trial-to-trial. If participants reached the
outcome state associated with a token, then they would gain the corresponding
monetary amount. Note that this goal-value manipulation is intended to encourage
participants to act on a stable model-based control strategy, as opposed to
developing separate multiple model-free strategies for each color tokens in the
absence of the model-based control.

Second, to create a situation where the model-free control overrides the model-
based control and to further dissociate the model-free from the model-based,
changes to the state transition probabilities were implemented. Two types of state-
transition probability were used—(0.9, 0.1) and (0.5, 0.5) (a low and a high state-
transition uncertainty condition, respectively). They are the probabilities that the
choice is followed by going into the two consecutive states. For example, if you
make a left choice at the state 1 and the state transition probability is (0.9, 0.1) at
that moment, then the probability of your next state being state 2 is 0.9 and the
probability for state 3 is 0.1. The order of the block conditions was randomized.
The blocks with the state transition probability (0.9,0.1) consists of three to five
trials, whereas those with (0.5,0.5) consists of five to seven trials; it was previously
shown that with (0.9, 0.1) participants feel that the state transition is congruent
with the choice, whereas with (0.5, 0.5) the state transition is random3°.
Furthermore, the changes at these rates ensures that tonically varying changes in
model-based vs model-free control can be detected at experimental frequencies
appropriate for fMRI data. The state-transition probability value was not informed
to participants; estimation of state-transition probabilities can be made by using the
model-based strategy.

To manipulate the state-space complexity, the present study also introduced the
third task parameter, the number of available choices. Two types of choice sets
were used—(L, R) and (L1, L2, R1, R2) (a low and a high state-space complexity
condition, respectively). The order of the block conditions was randomized. To
preclude the task being too complex, changes in the number of available choices
occur only in the second stage of each trial, while in the first stage the number is
always limited to two (L and R).

Behavioral measure (choice optimality). Choice optimality measure quantifies
the extent to which participants on a given trial took the objectively best choice had
they complete access to the task state-space, and a perfect ability to plan actions in
that state-space. It is based on the choice of the ideal agent assumed to have a full,
immediate access to information of the environmental structure, including state-
transition uncertainty and task complexity. The choice optimality is defined as the
degree of match between subjects’ actual choices and an ideal agent’s choice cor-
rected for the number of available options. To compute the degree of choice match
between the subject and the ideal agent, for each condition, we calculated an
average of normalized values (i.e., likelihood) of the ideal agent for the choice that a
subject actually made on each trial. To correct for the number of options, we then
multiplied it by 2 for the high complexity condition; this is intended to compensate
for the effect that the baseline level of the likelihood in the high complexity con-
dition (# of available options = 4) becomes half of that in the low complexity
condition (# of available options = 2). In other words, this adjustment effectively
compensates the effect of # of available options on normalization without biasing
the correspondence between participant’s choices and optimal choices. The choice
optimality value would have a maximum/minimum value if a subject made the
same/opposite choice as the ideal agent’s in all trials, regardless of complexity
condition changes.

Full details of choice optimality are provided in Supplementary Methods—
Behavioral measure (choice optimality).

Computational model of arbitration. Computational models of arbitration used
in this study are based on the previous proposal of arbitration control3?. The

original arbitration model uses a dynamic two-state transition’! to determine the
extent to which the control is allocated to a model-based learner (MB)24 and to a
model-free SARSA learner (MF)®2 at each moment in time. Specifically, the change
of the control weight Py (the probability of choosing a model-based strategy) is
given by the difference between two types of transition: MF—MB and MB—MF:

dP,
%:“(I*PMB)*ﬁPMBa (1)

where « and f3 refer to the transition rate MF—MB and MB—MF, respectively.
The transition rate « (MF—MB) is found to be a function of reliability of the
MF strategy that reflects the average amount of RPE3(:

alx) 4

T It exp®y)’ @)

where x refers to MF reliability and the two free parameters A and B refer to the
maximum transition rate and the steepness, respectively. Likewise, the transition
rate f (MB—MEF) is defined as a function of MB reliability that reflects the
posterior estimation of the amount of SPE(,

Computational hypotheses on arbitration. We tested three computation types on
arbitration incorporating prediction uncertainty and task complexity.

First, to test “goal-driven MF” (Fig. 5a) we implemented the following versions:
(1) “IMF model” refers to the null hypothesis that the MB and the goal-
independent MF interacts; (2) “3Q model” refers to the hypothesis that the MB
interacts with a single MF with goal-dependent state-action value sets. Specifically,
the MF learns a state x action x goal(red/blue/silver) value matrix with a single
learning rate; (3) “3MF model” refers to the hypothesis that the MB interacts with
goal-dependent multiple MFs. Specifically, each goal is associated with an
independent MF (red, blue, and silver) with a separate learning rate.

Second, to test the effect of the state-space complexity on arbitration control, we
define a transition rate as a function of both reliability and complexity (see the right
box of Fig. 5a). The following variants of the transition function were used: (1)
“Sign of modulation” is intended to test whether the complexity has a positive or
negative influence on the transition rate. We set z=1 and 2 or z=2 and 1 for a
low and high complexity condition, respectively. (2) “Direction of modulation” is
intended to test whether the complexity influence the both transition rates
MB—MF and MF—MB (“Bidirectional”), or each single transition rate
(“MB—MF” and “MF—MB”). This means that the above rules (the type of
interaction and the sign of modulation) are applied to both transition rates, or to a
single direction, respectively. 3) “Type of interaction” is intended to investigate the
effect of the task complexity on the transition rates. For simplicity, we only show
the variants of the transition rate « (MF—MB). The same rule can be applicable to
the transition rate . “Null” assumes that there is no complexity effect on
arbitration control; refer to the Eq. (2). “Interactionl” assumes that there is a direct
interaction effect (complexity (2) x reliability (x)) on arbitration control.

_ A
olx) = 1+ exp(B(1 + cz)x)

“Interaction2” assumes that there is a indirect interaction effect on arbitration
control. Although there is no interaction term (zx), the transition rate is a function
of both complexity (z) and reliability (x).

a(x)

3)

Az

1y exp(Bx) 4)

To test the effect of the sotate-space complexity on exploration, we define an
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exploration parameter as a function of complexity (see the bottom-left box of
Fig. 5a).

P(als) = >, exp(t(2) Q(s, b))

Third, we also test the effect of complexity on exploration. To test the hypothesis
that increasing complexity increases the degree of explorative choices (Fig. 5a), we
set 7(z) =1 and 0.5 for the low and high complexity condition, respectively. For
testing the hypothesis that increasing complexity decreases the degree of
explorative choices, we set 7(z) = 0.5 and 1.

Note that we compared prediction performance of all combinations of the
above cases, and for simplicity we showed the results of only 41 major cases
(Fig. 5b); in most of cases prediction performance is far below than the stringent
threshold (exceedance probability p = le-3).

(5)

Comparison between our model and a linear MB-MF mixture. In a stable
environment (i.e., a fixed amount of state-transition uncertainty and a fixed level of
task complexity), the state of our computational model converges to a fixed point.
This is specified by the steady-state model choice probability:

dPyg
=0. 6
T (6)
Then by using (1), we get
[24
PMB_M7PMF_m‘ (7)

Note that this is the equivalent of a simple mixture of MB and MF RL’.

fMRI data acquisition. Functional imaging was performed on a 3T Siemens
(Erlangen, Germany) Tim Trio scanner located at the Caltech Brain Imaging Center
(Pasadena, CA) with a 32 channel radio frequency coil for all the MR scanning
sessions. To reduce the possibility of head movement related artifact, participants'
heads were securely positioned with foam position pillows. High-resolution structural
images were collected using a standard MPRAGE pulse sequence, providing full brain
coverage at a resolution of 1 mm x 1 mm x 1 mm. Functional images were collected at
an angle of 30° from the anterior commissure-posterior commissure (AC-PC) axis,
which reduced signal dropout in the orbitofrontal cortex. Forty-five slices were
acquired at a resolution of 3 mm x 3 mm x 3 mm, providing whole-brain coverage. A
one-shot echo-planar imaging pulse sequence was used (TR = 2800 ms, TE = 30 ms,
FOV = 100 mm, flip angle = 80°).

fMRI data analysis. The SPM12 software package was used to analyze the fMRI
data (Wellcome Department of Imaging Neuroscience, Institute of Neurology,
London, UK). The first four volumes of images were discarded to avoid T1 equi-
librium effects. Slice-timing correction was applied to the functional images to
adjust for the fact that different slices within each image were acquired at slightly
different points in time. Images were corrected for participant motion, spatially
transformed to match a standard echo-planar imaging template brain, and
smoothed using a 3D Gaussian kernel (6 mm FWHM) to account for anatomical
differences between participants. This set of data was then analyzed statistically. A
high-pass filter with a cutoff at 129 s was used.

GLM design. A GLM was used to generate voxel-wise statistical parametric maps
from the fMRI data. We created subject-specific design matrices containing the fol-
lowing regressors: (R1) regressors encoding the average BOLD response at two choice
states and one outcome states, (R2, R3) two parametric regressors encoding the
model-derived prediction error signals—SPE of MB and RPE of MF, (R4) a regressor
encoding the average BOLD response at the start of each choice state (the time of
presentation of the values of each token in the first stage and the time of the state
presentation in the second stage), (R5) a parametric regressor encoding the goal
change; it is a binary variable indicating whether the type of a coin associated with the
largest value is different from the one in the previous trial. (R6) a parametric regressor
encoding max or separate reliability of MB and MF, (R7) a parametric regressor
encoding complexity, (R8) a parametric regressor encoding complexity x max relia-
bility, (R8, R9) two parametric regressors encoding the chosen value of the model-free
and the model-based system, respectively (Qur and Qup), (R10) and one parametric
regressor encoding the chosen minus the unchosen value, a weighted sum of the Qup
and Qs values according to the output of the arbitration system (Qa,). For value
signals of the arbitration output, we also in a separate model tested for the effects of
both the chosen values alone instead of the effect of chosen minus unchosen value,
but as found previously in our 2014 paper, we found that the chosen minus unchosen
value signal showed a more robust effect in vimPFC, hence we used chosen vs
unchosen value for the arbitration value signal in our main fMRI analysis. For each
GLM run at the single subject level, orthogonalization of the regressors was disabled.
Finally, we implemented a standard second-level random effects analysis for each
regressor of interest, and applied correction for multiple comparisons. Specifically,
after running the first level GLM including all the regressors of interest, we ran a one-
sample t-test at the second level for each separate regressor (i.e., random effects model
each in a separate). Our primary means of correction was small volume correction

using 10 mm spheres centered on the coordinates for the relevant computational
signals from our 2014 study>?, given we had strong a priori hypotheses about the
location of each of the computational variables based on our original study. However,
we also reported if the clusters survived more stringent correction at the whole brain
level, cluster corrected at p <0.05 FWE (extent threshold at p < 0.001), or the more
stringent again whole brain voxel-level correction at p < 0.05 FWE.

Bayesian model selection analyses on fMRI data. To formally test which version
of arbitration control provides the best account of responses in ilPFC, we ran a
Bayesian model selection®3. We chose three models—{a,B}, {a,B}2, {2}, the
original arbitration model® and the two other versions that we found in Bayesian
model selection analysis on behavioral data exhibit the second best and the best
performance, respectively. We used a spherical ROI centered on the coordinates
(—54, 38, 3) and (48, 35, —2) from the previous study>” with a radius of 10 mm.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw behavioral data and fMRI results are available for download at https://github.
com/brain-machine-intelligence/task_complexity_2018.

Code availability
The simulation codes are also available for download at https://github.com/brain-machine-
intelligence/task_complexity_2018.
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