
74Oliver Prenzel et al.: A Study on the Application of the Software Framework MASSiVE in KAIST’s Intelligent Sweet Home System

A Study on the Application of the Software
Framework MASSiVE in KAIST’s Intelligent

Sweet Home System

Oliver Prenzel*, Sang Wan Lee**, Zeungnam Bien**, and Axel Graeser*

*Institute of Automation, Department of Electrical Engineering and Information Technology, University of
Bremen, 28359 Bremen, Germany

(Tel: +49-421-218-3594, Fax: +49-421-218-4596 ; E-mail: {ag, prenzel}@iat.uni-bremen.de)

** Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and
Technology, Daejeon, Korea

(Tel: +82-42-350-5419, Fax: +82-42-350-8750 ; E-mail: bigbean@ctrsys.kaist.ac.kr, zbien@ee.kaist.ac.kr)

Abstract MASSiVE (Multi - Layer
Architecture for Semi-Autonomous Service
Robots with Verified Task Execution) is a software
framework that provides an infrastructure
concept for distributed sensor and actuator
systems such as service robots, operating in
environments that are equipped with smart
components. Besides this modular and extensible
architecture, a principle of task knowledge
specification and verification with process-
structures is included in MASSiVE that is able
to guarantee task planning in real time along with
verified and thus robust system runtime behavior.
In this paper the framework is presented briefly.
The focus of this contribution is to study how
to apply the MASSiVE principles for a typical
sample application scenario in KAIST’s
Intelligent Sweet Home System. First, the required
software components have to be derived, and
second the exemplary application of MASSiVE’s
specification and verification methods and tools
is demonstrated. The flexibility and the
structuring capabilities of the MASSiVE
framework as well as the impact of fast system
deployment will be worked out.

Index Terms Software architecture, task
knowledge specification and verification, semi-
autonomy, service robots in intelligent
environment.

1. INTRODUCTION

A service robot is, unlike its industrial counterpart,
intended to act in mostly unstructured and dynamic
environments, like domestic ones or at work places.
It has to be able to pursue a certain mission goal as
commanded from its user on the one hand but also
needs to react flexibly to dynamic changes within the
workspace, like caused by variations in the lighting
conditions or moving obstacles. To meet these
requirements, hybrid multi-layer control architectures
have been applied here [1], [2], [3]. These architectures
usually consist of three layers:

A deliberative layer, which contains a task planner
to generate a sequence of operations to reach
a certain goal with respect to the user’s input
command.

A reactive layer, which has access to the system’s
sensors and actuators and provides reactive
behavior which is robust even under environmental
disturbances, e. g. with the help of closed-loop
control.

A sequencer that mediates between deliberator and
reactive layer, i. e. activates or deactivates reactive
operations according to the deliberator’s
specification.

The software framework MASSiVE [4], developed
at the Institute of Automation (IAT, Germany) is a
special kind of hybrid multi-layer control architecture

International Journal of ARM, VOL. 9, NO. 4, December 200875

which is tailored to the requirements of semi-
autonomous and distributed systems, like the
rehabilitation robots FRIEND [4] or KARES [5], acting
in environments with distributed smart components.
These intelligent wheelchair mounted manipulator
systems allow to benefit from the inclusion of the
user’s cognitive capabilities into task execution and
consequently lower the system complexity compared
to fully autonomous system as conventionally intended
to be developed. The semi-autonomous control
requires a sophisticated integration of a human-
machine-interface (HMI) which is able to couple input
devices according to the user’s impairment [6], [7],
as e. g. a haptic suit, eye-mouse, speech-recognition,
chin joystick or a brain-computer interface (BCI).
The resulting MASSiVE control architecture with
special emphasis on the HMI component is depicted
in Fig. 1. Here, the deliberator has been moved to the
sequencer component, and the HMI has direct access
to control the actuators in the reactive layer during
user interactions.

Besides the focus on semi-autonomous system
control, the MASSiVE framework includes a second
main paradigm, namely the pre-structuring of task
knowledge. This task planner input is specified offline
in a scenario-driven approach with the help of so-called
process-structures on two levels of abstraction, the
abstract level and the elementary level. After
specification and before being used for task execution,
the task knowledge is verified offline, to guarantee a
robust runtime behavior. As discussed in larger detail
in [7], the offline verified task knowledge drives all
user interaction processes during task execution. It
specifies the resources to be used (e. g. a camera),
limits the user’s interaction freedom based on a user
interaction context, which is derived from the given
task knowledge, and finally assures the availability
as well as conformity of requested information after
successful completion of a user interaction. Possible
examples of user interactions are the camera-based
identification of objects as described in [7] or the
fine adjustment of the gripper to an object to be
manipulated.

Within this contribution the applicability of the
MASSiVE framework for the realization of a typical
support task from KAIST’s Intelligent Sweet Home
environment is discussed. The necessary architectural
elements within the reactive layer of the control
architecture are worked out and the steps of scenario-
driven programming are illustrated. Especially, the
recently developed approach of elementary process-
structure specification with the help of function block
networks is presented. This method makes the
programming task more ergonomic and meanwhile
maintains the verification capabilities with the help
of automatic conversion of function block networks
into verifiable Petri-Nets.

Fig. 1. Hybrid multi-layer control architecture
MASSiVE for semi-autonomous service-robots with

verified task execution.

2. SAMPLE TASK IN KAIST’S

INTELLIGENT SWEET HOME

2.1. User Transfer Scenario

The Intelligent Sweet Home system at KAIST has
been built up to provide a realistic test environment

76Oliver Prenzel et al.: A Study on the Application of the Software Framework MASSiVE in KAIST’s Intelligent Sweet Home System

Fig. 2. User transfer scenario as typical support
scenario in KAIST’s Intelligent Sweet Home (ISH)

System (Figure is taken from:[8]).

Fig. 3. Task steps of user transfer with robotic hoist,
intelligent bed and intelligent wheelchair robots.

(Figure is taken from [8].)

of various solutions and concepts of rehabilitation
robotics [8]. One of scenarios that have been developed
is the transfer of the disabled user via robotic hoist
from bed to wheelchair, or vice versa. This scenario
is depicted in Fig. 2.

Three intelligent robotic agents are cooperating in
this scenario:

An intelligent bed, equipped with pressure sensor
system to determine the user’s posture, as well
as bar-type robotic arm for actively supporting
the user when intending to change posture and
position,

a robotic hoist for lifting and lowering the user,
able to navigate in the room with a ceiling-
mounted artificial star navigation system and

an intelligent wheelchair with robotic arm and a
tilted scanning mechanism of laser range finder,
to navigate autonomously and to be able to
automatically dock at the robotic hoist.

A detailed discussion of the user transfer task
is described in [8]; and it is summarized in the
following:

As Fig. 3 illustrates, the robotic hoist moves from
the recharge station to the intelligent bed, which aids
the user to sit up with help of the movable bar and

automatic adjustment of the upper bed part. After the
robotic hoist lifts the user, the intelligent wheelchair
automatically docks to the hoist system, so that the
user can be lowered into the wheelchair. Finally,
the wheelchair navigates to the target location
as commanded by the user (e. g. to the room door),
whereas the robotic hoist moves back to the recharge
station.

2.2. Problem

The execution of user transfer scenario is well-
demonstrated by relevant description of the robots’
behavior, i.e., sequence of the robots’ actions. However,
this is case-dependent; the sequence is required to be
re-organized by developers when an addition of a new
scenario is required.

Besides, ISH system lacks an automatic architecture
which effectively manages task knowledge
specification from abstract level to elementary level;
relevant tasks are organized in abstract level, while
related functions are executed in elementary level.

Another problem is that, since the resulting process
map in the elementary level may require many actions
for complex tasks, their relations inevitably become
complicated; it is thus difficult to modify the relevant
tasks in elementary level. Therefore, a flexible design
concept [8] - organization that considers nature of the
disabilities of the user and customization that makes

International Journal of ARM, VOL. 9, NO. 4, December 200877

the design much faster - is limited to simple scenarios.
Therefore, the problem to be tackled is an automatic

realization of the given task from abstract level to
elementary level under the MASSiVE framework,
which is able to effectively structure task knowledge
with high usability and flexibility.

In the following chapters, an application to
MASSiVE framework will be demonstrated to
improve the task management skill of ISH by focusing
on a user transfer task, which is a typical scenario of
ISH.

3. BEHAVIORAL SPECIFICATION FOR

USER TRANSFER TASK IN MASSiVE

In the following section it is analyzed how to realize
the user transfer task based upon the components
provided by MASSiVE. This includes the specification
of the architectural elements first and afterwards
the programming and verification of required pre-
structured task knowledge.

3.1 Architectural Components

Fig. 4 depicts the MASSiVE reactive layer with
components as used in the ISH. To be able to re-use
software components and to exchange hardware
components without re-programming effort throughout
the whole system, MASSiVE distinguishes between
skill layer and hardware layer. The skill layer provides
the basic system operations that are called by the
task planner within the sequencer. They encapsulate
algorithmic implementations based on the pure
hardware functionality as provided by the hardware
layer. As Fig. 1 points out, the reactive layer contains
reactive operations which access sensors as well as
actuators, direct control operations, with access only
to the actuators, and finally monitoring operations
based on sensorial input. The skills in the skill layer
are provided by skill servers and the hardware
functionality is encapsulated in hardware servers
within the hardware layer. One skill server is
responsible for the management of a certain set of
hardware. For the sake of re-configurability, scalability

of computer power and to be able to build up distributed
systems, all components in the reactive layer are able
to communicate via the middleware CORBA [9].
However, also direct communication within the same
software process is possible, if required, e. g. within
control loops that rely on a fast throughput of sensorial
data. The basic system design layout as well as the
communication infrastructure is software-technically
provided by common base classes for skill servers as
well as for hardware servers.

Fig. 4. Reactive layer components for ISH.

Besides containing the skill and hardware layer,
the MASSiVE reactive layer has CORBA
communication access to the sequencer, the human
machine interface and to the sub-symbolic world
model component. The latter one serves as data buffer
for all non-symbolic (e. g. geometrical) information
about the environment and the system that is
exchanged by the skills operating in the skill layer.
(The symbolic world model layer is accessed by the
symbolic planner in the sequencer, as depicted in Fig. 1
and further explained below.)

According to Fig. 4 the skill servers Bed, Hoist
and Wheelchair are required for the user transfer task
in ISH. The intelligent bed skill server manages the
hardware servers PressureSensor, Robotarm1 and Bar.
The hoist skill server is connected to the ASN system
(artificial star navigation system) and the intelligent
wheelchair skill server maintains the hardware servers
Robotarm2 and LRF (laser range finder).

78Oliver Prenzel et al.: A Study on the Application of the Software Framework MASSiVE in KAIST’s Intelligent Sweet Home System

Fig. 5. Abstract process-structure (PSA) for user
transfer task. The encircled numbers denote pairs of

applicable composed operators (COPs). They are
given in Table 1.

In the subsequent section the required task
knowledge for the user transfer will be analyzed. This
includes the exemplary derivation of necessary skill
server interfaces.

3.2 Task Knowledge Specification on the Abstract
Level

Every task in MASSiVE that can be commanded
by the user on high abstraction level, like “Pour in a
drink” or “Transfer me to the room door”, is modeled
with the help of an abstract process-structure (PSA).
The system programmer has to decide whether to
split up one task into several sub-tasks, to produce
highly re-usable and less complex task specifications.
A PSA models a task on the abstract, i. e. symbolic
level. First, the task participating objects, TPO, have
to be determined. TPOs are combined to object
constellations (OCs) which describe the different
physical contact states of the objects throughout the
task execution process. MASSiVE’s PSAs are basically
AND/OR nets, being used in assembly task planning,
but also having been proposed as compact task
description for service robotics [10]. They have been
enhanced with first order predicate logic facts [11] to be
embeddable in the MASSiVE control architecture [12].
Due to the PSAs origin in assembly planning the
contained OCs are connected via assembly or
disassembly operations (AOP, DOP) or internal state
transitions (IST).

The PSA for the user transfer task is defined in
Fig. 5. Task participating objects are the user (User),
the intelligent bed (Bed), the robotic hoist (RH) and
the intelligent wheelchair (IW). The given PSA

contains 12 object constellations which are connected
with each other by 8 pairs of composed operators
(COPs). The COP pairs are specified in Table 1
according to the encircled numbers in Fig. 5. They
are named composed operators since they constitute
a high abstraction operation specification and will be
decomposed into elementary process-structures as
described further on. Besides the task participating
objects the COPs require symbolically represented
sub-symbolic information [12], which is denoted as
information descriptors like InFrontOfUser, UserLoc1,

DockingLoc and RoomDoor in this sample task. To
specify an abstract process-structure in a logically
correct form, the task participating objects are formally
introduced in MASSiVE’s task knowledge database
and the programming of the PSA is done with a specially
developed graphical programming interface [13].

COPNo. COPType COP Name and Parameter

1 AOP MoveBar(Bed, InFrontOfUser)

DOP RemoveBar(Bed, InFrontOfUser)

2 AOP MoveToRelLoc(RH, Bed, UserLoc)

DOP MoveFromRelLoc(RH, Bed, UserLoc)

3 IST Lift(RH, User)

IST Lower(RH, User)

4 AOP MoveToRelLoc(IW, RH, DockingLoc)

DOP MoveFromRelLoc(IW, RH, DockingLoc)

5 IST Lift(RH, User)

IST Lower(RH, User)

6 AOP MoveToRelLoc(IW, RH, DockingLoc)

DOP MoveFromRelLoc(IW, RH, DockingLoc)

7 AOP MoveToLocation(IW, RoomDoor)

DOP MoveFromLocation(IW, RoomDoor)

8 AOP MoveToRelLoc(RH, Bed, UserLoc)

DOP MoveFromRelLoc(RH, Bed, UserLoc)

Table 1. Composed operator pairs (COPs) for PSA

from Fig. 5. The COP numbers refer to the encircled
numbers in the PSA. The marked AOP 4 is used for

further more detailed illustrations.

1 Loc = Abbreviation for location.

International Journal of ARM, VOL. 9, NO. 4, December 200879

Certain sets of OCs in Fig. 5 are marked as Initial
Situation respectively Target Situation. A situation in
a PSA contains OCs that uniquely include all task
participating objects TPO and are part of the Situation
Graph as defined in [14]. I. e. they have to define
a valid intermediate state that is transformable via
the COPs as specified for the PSA. Initial and target
situation are determined online according to the
current execution context. The initial situation is the
result of the initial monitoring process [14] and the
target situation is set according to the user input
command respectively according to a valid initial
situation in a subsequently executed PSA. In the given
example the initial situation is set to the state where
the user is lying in the bed, the robotic hoist is in its
recharge location and the intelligent wheelchair is
also in some default or arbitrary but free location. In
the desired target situation the user has been transferred
to the wheelchair and has been brought to the room
door, while the bed is left empty and the robotic
hoist left the location beside the bed. In this setup,
the task planner will generate the following action
sequence:

1) MoveBar(Bed, InFrontOfUser)

2) MoveToRelLoc(RH, Bed, UserLoc)

3) Lift(RH, User)

4) MoveToRelLoc(IW, RH, DockingLoc)

5) Lower(RH, User)

6) MoveFromRelLoc(IW, RH, DockingLoc)

7) MoveToLocation(IW, RoomDoor)

8) MoveFromRelLoc(RH, Bed, UserLoc)

3.3 Task Knowledge Specification on the
Elementary Level

To demonstrate the task knowledge specification
process on the elementary level, the assembly operation
number 4 as marked in Table 1 is decomposed into an
elementary process-structure (PSE). A PSE gets the
input parameters as specified in the COP’s parameter
list (i. e. IW, RH and DockingLoc in this case).
Furthermore, pre- and post facts are associated with
each COP as mentioned in Section 3.2 or discussed
in more detail in [4].

The task of the system programmer who is
responsible for task knowledge input on the elementary
level is to specify how to execute a certain COP on
the level of basic skills of a robotic system, i. e. as
seen from the basic system perspective. He has to
define

The resources of the system to be used,

the elementary operations (skills) to be executed,

the necessary control flow and flow of sub-
symbolic data and

decides how to establish the connection to the
abstract task knowledge layer via setting the
COP’s post-facts.

First, PSEs are specified, and secondly they are
transformed into Petri-Nets for a formal verification
on a well-defined mathematical basis. The subject of
verification is the correctness of the just listed items
as well as to detect possible resource conflicts,
deadlock situations, unreachable targets or further
modeling errors.

For the sake of user-friendly programming on this
level, an approach with function blocks has been
developed [15]. In comparison to the previous approach
of manual direct specification of a PSE on Petri-Net
level, it offers the following advantages and therefore
leads to a more ergonomic programming procedure:

Hide the PSE’s complexity,

simplify the programming process,

avoid semantic errors and

intelligently and automatically support the
programming procedure.

The developed function block based programming
interface offers the programming elements as specified
in Fig. 6. The EEOPBlock2 encapsulates all required
information that is necessary for skill execution (skill
server, skill name, parameters, resources, possible
return values) and FactBlocks set the predicate logic

2 EEOP = elementary executable operation, since from the
viewpoint of the symbolic task planner these operations are
elementary.

80Oliver Prenzel et al.: A Study on the Application of the Software Framework MASSiVE in KAIST’s Intelligent Sweet Home System

facts as post-condition of the COP on the abstract
level. (The facts are stored in the symbolic layer of
the world model, see Fig. 1.) Furthermore, two types
of logical blocks are used to define AND respectively
OR connections within the control flow between the
function blocks and three kinds of ControlBlocks mark
the start, target or abort condition of execution.

Fig. 6. Elements of function-block-based
programming approach.

Fig. 7. Function-block-based programming interface with network specifying the COP
MoveToRelLoc(IW, RH, DockingLoc).

The function block network for the definition of
the COP MoveToRelLoc(IW, RH, DockingLoc) is
depicted in Fig. 7, also showing the programming
interface. This rather simple case of function block
network sequentially executes the following skills:

1) A self-localization of the robotic hoist is done
with the help of the hoist’s camera and the
artificial star navigation system. The result is
stored in the sub-symbolic world model.

2) The intelligent wheelchair navigates in front of
the hoist. The target location of this operation is
generated based upon the previously determined
hoist location information.

3) The wheelchair docks to the hoist by using its
laser range finder.

Finally, the COP’s post-facts IsInRelLoc()
and IsInFreePos() are set to TRUE respectively
FALSE.

3.4 Function Block Transformation into Petri-
Nets

To understand the algorithm that converts a function
block network into a Petri-Net the counterpart
elements in the two different network types are
summarized in Table 2.

3 International Journal of ARM, VOL. 9, NO. 4, December 200881

Function Block Network Petri-Net
Start, Target, Abort Place(s)
EEOP Transition(s)
Fact Place(s)
OR Place
AND Link to Transition

Table 2. Counterpart elements of function block
networks and Petri-Nets.

Fig. 8. Elementary process-structure of the COP MoveToRelLoc(IW, RH, DockingLoc) in Petri-Net format.

Fig. 9. Hierarchical flowchart of algorithm for converting function block networks into Petri-Nets.

Also, the Petri-Net resulting from the conversion
of the sample COP MoveToRelLoc is given beforehand
in Fig. 8. The conversion algorithm has been
implemented like the complete MASSiVE
architecture in the model-driven development

(MDD) environment Telelogic Rhapsody [16]. The
hierarchical flowchart model as depicted in Fig. 9 can
be automatically translated into C++ code that builds
the executable conversion module. This hierarchical
algorithm specification illustrates how the complexity
of an algorithm can be handled with the help of an
easy to understand flowchart model whose details
can be accessed on demand by browsing through the
software model in the CASE tool. Furthermore, only
flowcharts that adhere to the structuring rules as
introduced by Nassi/Shneidermann [17] produce
structured code in the target programming language.
Thus, a strict modularization of the algorithm is
enforced.

82Oliver Prenzel et al.: A Study on the Application of the Software Framework MASSiVE in KAIST’s Intelligent Sweet Home System

As the conversion algorithm is discussed in more
detail in [15], it is summarized here briefly. Some
notations have to be mentioned, beforehand: Bold
actions (e. g. the Init action) summarize C++ code
specifications, bold actions with sub-flowchart symbol
at the right corner of the action box (e. g. GenerateStart)
subsume sub-flowcharts, whereas all other actions
with normal font weight directly display C++ code.

In the algorithm’s first stage, the places for the start,
target and abort blocks are introduced. As specified
in Table 2 the start block may be represented not only
with one place, but in case of parallel control flow
links leaving the start block (parallel executable
operations), the start place splits into helper transition
plus place, according to the number of leaving
branches. (See [15] for such an example.)

The handling of EEOPs, Facts and OR blocks is
processed in a very similar manner. The algorithm
iterates over all function blocks in the network and
checks for the specific type (EEOP, Fact or Or) and
generates the respective elements according to Table 2.
This handling includes, if necessary, the introduction
of helper elements, as a place in a Petri-Net always
has to be connected to a transition and vice versa.
Special consideration is required for EEOP blocks, as
they need places to mark data availability (left side in
Fig. 8) as well as resource availability (right side in
Fig. 8). AND blocks are indirectly modeled by direct
linking of the preceding place to the blocks input
transition.

Finally, a special handling for parallel branches
leaving the start block takes place. Since it is possible
that one of these starting branches has not been
executed when the PSE’s target is reached (e. g. due
to a fact state that never became true during the
execution), this branch has to be deactivated. This is
done by connecting the target place to the start branch
activation place with a helper transition and thus to
force the consumption of tokens from potentially
marked places by the target place.

After conversion of a function block network into
an equivalent Petri-Net, the verification algorithms [18]
are applied to conduct the remaining checking
procedures as listed in Section 3.3.

If the specification of elementary process-structures
is finished, the interfaces for all skill servers are known
and the algorithmic skill implementation, including
e. g. the design of control loops, takes place. The skill
server interfaces for the hoist skill server and the
wheelchair skill server are exemplarily depicted in
Fig. 10, but only contain the skills as defined in the
discussed sample PSE MoveToRelLoc. Fig. 10 also
shows how the derived skill server classes inherit
basic skill server functionality from the common base
class, which are e. g. methods to indicate the connection
state within the reactive layer network or to reset the
skill server. The CallBack argument, which is the last
argument in each asynchronous skill method, serves
as communication mechanism to the sequencer as
introduced in [4].

Fig. 10. Resulting skill server interfaces as derived
from the sample PSE MoveToRelLoc depicted in

Fig. 7 and Fig. 8.

4. CONCLUSION AND OUTLOOK

In order to improve a task management skill of
KAIST’s Intelligent Sweet Home system, the
MASSiVE framework has been applied. The
discussion included the specification of required
infrastructural components as well as the necessary
steps of specification of verifiable task knowledge on
the behavioral programming level. This is, besides
the application of MASSiVE in various support
scenarios at the IAT, the first concrete example of
concept transfer. However, with respect to the special

3 International Journal of ARM, VOL. 9, NO. 4, December 200883

capability of system-controlled integration of user-
interactions into task execution, this approach is in
general suitable for any human-centered service robotic
system or for systems that have access to a human
operator.

Based on re-usage of existing software modules,
the new components can be deployed quickly. The
scenario driven and tool-supported programming
approach guides through the task knowledge definition
process and finally leads to the specification of the skill
server interfaces, which encapsulate the algorithmic
implementations. Especially on the level of elementary
system level programming the function-block-based
approach offers an ergonomic to use method which
inherently avoids errors and enables verification of
task knowledge via automatic conversion of function
block networks into Petri-Nets. Due to stringent
application of modularity within both levels of task
knowledge specification, the scalability of the method
can be guaranteed. One process-structure is always
a limited set of task knowledge that guarantees
verifiability.

Further steps to be conducted are ongoing
improvements and enhancements of MASSiVE’s
programming tools, e. g. to achieve a more tight
integration of the different tools for task knowledge
specification on the different abstraction levels. Also,
as a consequence of this first study of applicability,
the final algorithmic implementations of skill and
hardware servers and eventually the test on the real
systems in the ISH have to be conducted.

ACKNOWLEDGEMENT

Part of this work is supported by the BMBF
(Bundesministerium fur Bildung und Forschung,
German Ministry of Education and Research) under
the grant “AMaRob” within the “Leitinnovation
Service-Robotik”. This work was partially supported
by the SRC/ERC program of MOST/KOSEF (grant
#R11-1999-008).

REFERENCES

[1] R. Simmons, “Architecture, the backbone of

robotic systems,” Proceedings of the 2000 IEEE
International Conference on Robotics and
Automation, (San Francisco, CA), Apr. 2000.

[2] R. Bonasso, D. Kortenkamp, D. Schreckenghost,
and D. Ryan, “Three tier architecture for
controlling space life support systems,”
Proceedings of IEEE SIS’98, (Washington DC,
USA), 21 -23 May 1998.

[3] C. Schlegel and R. Woerz, “The software
framework SmartSoft for implementing
sensorimotor systems,” Proceedings of the IEEE/
RSJ International Conference on Intelligent Robots
and Systems, IROS, vol. 3, pp. 1610-1616, Oct
1999.

[4] C. Martens, O. Prenzel, and A. Graeser: “The
Rehabilitation Robots FRIEND-I & II: Daily Life
Independency through Semi-Autonomous Task-
Execution,” in Rehabilitation Robotics, I-Tech
Education Publishing, Vienna, Austria, ISBN
978-3-902613-01-1, 2007.

[5] Z. Z. Bien, W.-K. Song, D.-S. Kwon, M.-J. Chung,
H.-S. Park, D.-J. Kim, J.-H. Kim, and K. Lee, “A
Wheelchair Robot System and its Various Interface
Methods for the Disabled Persons,” Proceedings
of the 1st Workshop on Technical Challenge for
Dependable Robots in Human Environments,
Seoul, Korea, May 21-22, 2001.

[6] C. Martens, D.-J. Kim, J.-S. Han, A. Graeser, and
Z. Z. Bien, “Concept for a modified hybrid multi-
layer control-architecture for rehabilitation robots,”
in Proceedings of the 3rd International Workshop
on Human-friendly Robotic Systems, pp. 49- 54
Daejeon, Korea , January 21-22, 2002.

[7] O. Prenzel, C. Martens, M. Cyriacks, C. Wang,
and A. Graeser, “System-controlled user interaction
within the service robotic control architecture
MASSiVE,” Robotica, vol. 25, no. 2, pp. 237-244,
2007.

[8] K.-H.Park, Z. Z. Bien, J.-J. Lee, B. K. Kim, J.-T.
Lim, J.-O. Kim, H. Lee, D. H. Stefanov, D.-J. Kim,
J.-W. Jung, J.-H. Do, K.-H. Seo, C. H. Kim, W.-
G. Song, and W.-J. Lee, “Robotic smart house
to assist people with movement disabilities,”
Autonomous Robots, vol. 22, no. 2, Springer

84Oliver Prenzel et al.: A Study on the Application of the Software Framework MASSiVE in KAIST’s Intelligent Sweet Home System

Netherlands, ISSN 0929-5593, February, 2007.

[9] S. Vinoski, and M. Henning, Advanced CORBA
Programming with C++, Addison Wesley
Professional, 1999.

[10] T. Cao and A. C. Sanderson, “AND/OR Net
Representation for Robotic Task Sequence
Planning,” IEEE Transactions on Systems, Man,
and Cybernetics - part C: Applications and
Reviews, vol. 28, May 1998.

[11] S. Russel and P. Norvig, Artificial Intelligence -
A Modern Approach, Upper Saddle River, New
Jersey: Prentice Hall, second ed., 2003.

[12] C. Martens, “Teilautonome Aufgabenbearbeitung
bei Rehabilitationsrobotern mit Manipulator
Konzeption und Realisierung eines
softwaretechnischen und algorithmischen
Rahmenwerks,” PhD dissertation, University of
Bremen, Faculty I Physics / Electrical Engineering,
Nov. 2003. (In German).

[13] C. Martens, “Task oriented programming of
service-robots on the basis of process-structures,”
in: Methods and Applications in Automation, B.
Lohmann, A. Graeser, (Ed.), pp. 45-56, Shaker
Verlag, ISBN 3-8322-4502-2, Aachen, 2005.

[14] O. Prenzel, “Semi-Autonomous Object Anchoring
for Service-Robots,” in Methods and Applications
in Automation, B. Lohmann, A. Graeser, (Ed.),
pp. 57-68, Shaker Verlag, ISBN 3-8322-4502-2,
Aachen, 2005.

[15] O. Prenzel, A. Boit, and H. Kampe: “Ergonomic
Programming of Service Robot Behavior with
Function Block Networks,” in: Methods and
Applications in Automation, Shaker-Verlag,
2008.

[16] Telelogic, “Telelogic web-page,” http://www.
telelogic.com, 2008.

[17] I. Nassi, and B. Shneiderman, “Flowchart
Techniques For Structured Programming,” in
ACM SIGPLAN (Special Interest Group on
Programming Languages) Notices, vol. 8, August
1973.

[18] H. Kampe, “Verification of Petri-Net Based
Process-Structures for the Programming of

Service-Robots,” tech. rep., University of
Bremen, Institute of Automation (IAT), 2007.

