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Abstract. In this paper, a fuzzy LVQ(Learning Vector Quantization) is 
proposed which is based on the fuzzification of LVQ. The proposed 
FLVQ(Fuzzy Learning Vector Quantization) uses the different learning rate 
depending on the correctness of classification. When the classification is 
correct, the amount of update is determined by consideration of location of the 
input vector relative to the decision boundary. When the classification is not 
correct, the amount of update is determined by the degree of belongingness of 
the input vector to the winning class. The supervised IAFC(Integrated Adaptive 
Fuzzy Clustering) neural network 3, which uses FLVQ, is introduced in this 
paper. The supervised IAFC neural network 3 is both stable and plastic because 
it uses the control structure which is similar to that of Adaptive Resonance 
Theory(ART)-1 neural network. We used iris data set to compare the 
performance of the supervised IAFC neural network 3 with those of LVQ 
algorithm and backpropagation neural network. The supervised IAFC neural 
network 3 yielded fewer misclassifications than LVQ algorithm and backpropa-
gation neural network. 

1   Introduction 

A neural network is a network of interconnected neurons. These neurons are 
interconnected via weights. These weights are adjusted to improve the performance of 
neural network. Therefore, a learning rule which controls the adjustment of weights 
plays an important role on the performance of neural network. 

LVQ is one of supervised learning rules. LVQ moves the weight of a winner 
toward the input vector if the classification is correct[1,2]. On the other hand, LVQ 
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moves the weight of a winner away from the input vector if the classification is 
incorrect. Chung and Lee proposed FLVQ which incorporates fuzzy membership 
value with LVQ[3,4]. They derived FLVQ by optimizing an appropriate fuzzy 
objective function which takes into accounts of two goals. The first goal is 
minimizing the network output error which is the class membership differences 
between target and actual membership values. The second goal is minimizing the 
distances between the input patterns and the prototypes of classes. They solved the 
underutilization problems of LVQ and got better result than that of LVQ. This FLVQ 
updates the prototypes of classes regardless of winning or losing. The amount of 
update depends on the difference between the target membership value and the actual 
membership value in addition to the difference between the input pattern and the 
prototype of class. The problem of this FLVQ is that it requires target membership 
value. But, it is not easy to get target membership value in the real situations. 
Karayiannis also fuzzified LVQ[5,6]. He derived FLVQ by minimizing the average 
generalized mean between the input vectors and the prototypes using gradient 
descent. The prototypes are updated through an unsupervised learning process. All 
prototypes are updated and the amount of update depends on the difference between 
the input vector and the prototype, the fuzzy membership value, and a learning rate 
for each prototype. Because it uses batch learning, each prototype is updated with 
respect to all input vectors. But, it uses a large amount of memory. Karayiannis 
proposed weighted FLVQ[5]. It is derived by minimizing the weighted generalized 
mean of the squared distance between the input vector and the prototypes. It is similar 
to FLVQ by Karayiannis. Tsao et al. also proposed FLVQ[7]. It is similar to FLVQ 
by Karayiannis. 

This paper proposes a fuzzy LVQ which fuzzified LVQ. The proposed FLVQ uses 
a function of iterations, Π  membership function, and the fuzzy membership value 
instead of the learning rate of LVQ. The Π  membership function reduces the effect 
of outliers to the prototype of class. LVQ uses the same learning rate regardless of the 
classification is correct or not. However, the proposed FLVQ uses the different 
learning rates depending on the correctness of classification. The proposed FLVQ 
uses the difference between one and the fuzzy membership function if the 
classification is correct. But it uses the fuzzy membership value when the 
classification is not correct. When the classification is correct, the weighting factor of 
the data point, which locates near the decision boundary, for updating amount of the 
weight is larger than the weighting factor of the data point, which locates far from the 
decision boundary, for updating amount of the weight. This reduces the effect of 
outliers to the decision boundary. The outliers deteriorate the decision boundary, 
because the outliers tend to move away the prototypes of the classes from the proper 
locations for the decision boundary. The proposed FLVQ prevents the outliers from 
deteriorating the proper decision boundary, because it uses the difference between one 
and the fuzzy membership value. The fuzzy membership value of an outlier in the 
class, where it belongs to, is larger than the fuzzy membership value of the data point, 
which locates near the decision boundary, in the class where it belong to. The larger 
the fuzzy membership value, the smaller the difference between one and the fuzzy 
membership value. Because the FLVQ uses the difference between one and the fuzzy 
membership value, it considers the data point, which locates near the decision 
boundary, more important when it updates the prototype of class. When the 
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classification is not correct, the proposed FLVQ uses the fuzzy membership value to 
update the prototype of the selected class. The updating amount of the prototype of 
the selected class is proportional to the amount of belongingness of the misclassified 
data point in the selected class. 

The proposed FLVQ is integrated into the supervised IAFC neural network 3. The 
supervised IAFC neural network 3 has both the stability and the plasticity as the 
ART-1 neural network because it uses the control structure which is similar to that of 
the ART-1 neural network[8](Fig.1). It is stable to preserve significant past learning 
but plastic to incorporate new input point whenever it might appear. It controls the 
number of clusters and the size of clusters by the vigilance parameter. In the 
supervised IAFC neural network 3, the vigilance parameter is related to a distance 
threshold or cluster diameter[9,10]. Even though the ART-1 neural network processes 
binary data, the supervised IAFC neural network 3 processes continuous-valued data. 
The supervised IAFC neural network 3 uses the Euclidean distance to choose the 
nearest prototype and calculate thresholds[9,10]. 
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Fig. 1. The structure of the supervised IAFC neural network 3 

We compared the performance of the supervised IAFC neural network 3 with those 
of LVQ algorithm and backpropagation neural network using the iris data set, which 
is a benchmark data set for comparing the performance of clustering algorithms. 

2   Supervised IAFC Neural Network 3 

After the input vector is applied to the supervised IAFC neural network 3, 
competition among output neurons occurs in a winner-take-all fashion. The output 
neuron, of which weight has the minimum Euclidean distance to the input vector, 
wins the competition. The I-th output neuron, 
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( )min ,
i

I t= − ix v  (1) 

where x  is the input vector and ( )tiv  is the weight of the i-th output neuron, wins the 

competition. 
After selecting a winning output neuron, the supervised IAFC neural network 3 

performs the vigilance test according to the following vigilance criterion : 

( ) ,I
Ie t Tμ− − ≤x v  (2) 

where T is the vigilance parameter. The fuzzy membership value 
Iμ  is defined as 

follows : 
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where n is the number of committed output neurons, and [1, ]m∈ ∞  is a weight 

exponent. m is experimentally set to 2. However, when the number of committed 
output neurons is one, the vigilance criterion is ( )t T− ≤1x v . 

The dissimilarity measure in Eq. (2) is the relative distance which considers both 
the Euclidean distance and the relative location of the input vector to the prototypes of 
the existing classes[9]. The weighting factor for the input vector, which locates far 
from the decision boundary, is smaller than the weighting factor for the input vector, 
which locates near the decision boundary. This weighting factor is multiplied by the 
Euclidean distance between the input vector and the prototype of the winning class. 
We can compare this relative distance with Mahalanobis distance which considers 
statistical properties of data[11]. In the case of the Mahalanobis distance, weighting 
factor is large when the covariance is small. On the other hand, weighting factor is 
small when the covariance is large. 

If the winning output neuron satisfies the vigilance test, the supervised IAFC 
neural network 3 updates the weight of the winning output neuron as follows: 

( ) ( ) ( ) ( ) ( ) ( )1 , , 1I I I I It t f t t T tπ μ⎡ ⎤ ⎡ ⎤+ = + ⋅ ⋅ − ⋅ −⎣ ⎦ ⎣ ⎦v v x v x v  

                                                 if x is classified correctly, 

(4) 

( ) ( ) ( ) ( ) ( )1 , ,I I I I It t f t t T tπ μ⎡ ⎤ ⎡ ⎤+ = − ⋅ ⋅ ⋅ −⎣ ⎦ ⎣ ⎦v v x v x v
 

                                             if x is classified incorrectly, 

(5) 

( ) ( )1i it t+ =v v               for ,i I≠  (6) 
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where ( )f t  is the function of iterations. ( )f t  is defined as 
( )

1

1 1k t − +
, where k is the 

constant which controls convergent speed. ( )( ), ,i t Tπ x v  is defined as 
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When the classification is correct, the proposed FLVQ moves the weight of the 
winning class toward the input vector. In Eq. (4), the proposed FLVQ considers the 
location of the input vector for updating the weight of the winning output neuron 
using 1 Iμ− . In Fig. 2, the fuzzy membership value of the input vector B in the class 1 

is larger than that of the input vector A in the class 1. The input vector near the 
decision boundary has more information about the proper decision boundary. The 
input vector, which locates far from the decision boundary like the input vector B, 
moves the decision boundary away from the proper position. It deteriorates the 
decision boundary. Using 1 Iμ−  can prevent the input vector, which locates far from 

the decision boundary like the input vector B, from deteriorating the decision 
boundary. By using 1 Iμ−  in Eq. (4), the weighting factor for the input vector A is 

larger than that for the input vector B. On the other hand, when the classification is 
not correct, the proposed FLVQ moves the weight of the winning class away from the 
input vector. The proposed FLVQ uses the fuzzy membership value to update the 
weight of the winning class as in Eq. (5). The updating amount of the weight of the 
winning output neuron is proportional to the fuzzy membership value. 

 

Fig. 2. Consideration of location of the input vector with respect to the decision boundary 
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3   Test and Result 

We used iris data set, which is a benchmark data set for comparing the performance 
of clustering algorithms, to compare the performance of the supervised IAFC 3 with 
those of LVQ algorithm and backpropagation neural network. Iris data set consists of 
150 four-dimensional data, and 3 subspecies[12]. Each subspecies has 50 data. We 
chose 75 data arbitrarily from 150 data, and used as a training data set. We chose 25 
data from each subspecies. And we used the other 75 data as a testing data set. 

During the training, if ( ) ( )1t t− −v v  is less than 0.01, we considered the weights 

to be converged experimentally and stopped the iterative operations of training for the 
supervised IAFC neural network 3. After that, we tested the supervised IAFC neural 
network 3. Fig. 3 shows the comparison between the result of the supervised IAFC 
neural network 3 and the results of LVQ algorithm and backpropagation neural 
network. The supervised IAFC neural network 3 iterated 7 iterations to train, and 
yielded 2 misclassifications when T is 1.7 and K is 0.5. We tested LVQ algorithm 
using MATLAB Toolbox. We tested LVQ algorithm under the condition that the 
learning rate is 0.01. LVQ algorithm yielded 7 misclassifications. And 
backpropagation neural network yielded 5 misclassifications. Fig. 4 shows the 
number of misclassifications versus iteration number when we trained the supervised 
IAFC neural network 3. 

 
(a)           (b)                  (c) 

(a) LVQ algorithm (b) Backpropagation neural network (c) Supervised IAFC neural 
network 3 

Fig. 3. Comparison of results using iris data set 

 

Fig. 4. The number of misclassifications versus the iteration number when the supervised IAFC 
neural network 3 was trained 
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4   Conclusion 

We proposed FLVQ which is based on the fuzzification of LVQ. The proposed FLVQ 
uses the different learning rate depending on the correctness of classification. The 
proposed FLVQ considers the location of input vector relative to the decision 
boundary. This prevents the outlier from deteriorating the decision boundary. 

We used iris data set to compare the performance of the supervised IAFC neural 
network 3 with those of LVQ algorithm and backpropagation neural network. The 
supervised IAFC neural network yielded fewer numbers of misclassifications than 
LVQ algorithm and backpropagation neural network. It required a few iterations to 
converge experimentally. 
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